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Our system uses shaded Spectators of sporting events often have difficulty perceiving the

) isi Ily en-
p 0 l y g ona l mo d e l s to h e l p movemen.t of players, CEle'S, horses, or balls Telev151(.)n. has successfully en
hanced viewer perception of some sports by providing unusual camera

television viewers placements, close-up views, instant replays, and slow-motion replays. But
appreciate the comp lex television enhancements can also distort a viewer’s perception. For exam-

ple, restricted camera placements in baseball, most notably the center-
tOp - hy O-f field camera, fail to communicate the trajectory of a baseball pitch. In a
tournament g o lf g reens. horse race, the head-on camera shot of the stretch run compresses the dis-
The system also models tances between horses. And in golf, diffuse overhead sunlight washes out

gOlf ball tmjectories and theCundulatlons in a_green. .
. it omputer graphics can help. Although much computer graphics re-
Puttmg dlfficulty- search focuses on the creation of realistic models, some recent work has
focused on nonrealistic rendering techniques that enhance the under-
standing of complex phenomena.l’2
In this article we address viewer perception of golf green topography
and how that topography affects putting. We combined conventional
computer graphics and numerical analysis techniques with application-
specific modeling and analysis algorithms to enhance a viewer’s under-
standing of the golf green. The presentations our system produces make
watching a golf match on television more entertaining.
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The golf green

Golf greens are the portions of a golf course that have
closely cut grass and undulations surrounding a hole. The
purpose of the game is to get a small resilient ball with a 1.68-
inch diameter into a small hole with a 4.25-inch diameter.
The golf course designer challenges the golfer by creating un-
dulations in the green and tilting the green with respect to
the surrounding environment. Although golf play on the
green is but one aspect of the game, many golfers find it the
most frustrating. Once on the green, the golfer must strike
the ball in the proper direction with the proper speed so it
rolls over the undulating green into the hole. Because the
challenge is great, television coverage of golf devotes more
than 50 percent of its
time to the players’
putting.

For several reasons,

television fails to bring
- viewers an appreciation
of putting’s complexity:

e Camera placement

is restricted to locations

that will not distract the

golfer. Portable cameras

can be moved behind

but not in front of the

golfer. Other cameras,

placed on towers, pre-

sent a high view of the

green but are not high

enough to give a full
overhead view.

Figure 1. Interior .
polygons generated
by connecting
neighboring points
on the square grid.
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Figure 2. Interior
and perimeter /
polygons.
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e The diffuse overhead sunlight washes out the undula-
tions in the green. Artificial lighting cannot be used because
it distracts the players.

* On television the often subtle tilt in a green’s orientation
relative to the horizon is camouflaged by the surrounding
sand traps and mounds.

e Since the TV cameras cannot display a trace of the ball’s
track, it is difficult to see how or understand why a golf ball
follows a given trajectory.

Golf terms
birdie—one stroke under par

caddy—person who assists a golfer, especially by
carrying the golf clubs

par—the standard number of golf strokes needed to
complete a hole or course in expert play

pin—the pole bearing a flag to mark a hole in golf;
always located on a green

Golf green visualization

Our approach to enhancing a viewer’s perception of a golf
green uses geometric models of greens, mathematical models
of putting, and computer graphics presentations of the greens
and putts.

First, to build an accurate model of the green topography,
we have surveyors measure elevations for the greens that we
want to present to the television audience. Then, we use
modeling software to create polygonal models of the greens.
A surveyor obtains the pin placement for the day’s round
and the location of each player’s ball. Mathematical models
of the golf ball motion predict its path along the green and
into the hole. During the tournament broadcast, an operator
moves the computer graphics camera, adjusts lighting, and
controls the putt simulations. The sports director broadcasts
the computer-generated sequences that will interest viewers
and enhance the announcers’ commentary.

Surveying the green

Before the tournament, a licensed surveyor uses a theodo-
lite to acquire green perimeter data and green elevation data
within the green. We use two approaches:

1. Gather the elevation data on a uniform x-y grid. For our
experiment, we sampled the green at two-foot intervals. Al-
though this simplifies the geometric modeling step, it takes
up to a full day to survey one green.
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2. Gather the elevation data on a nonuniform x-y grid,
taking more samples in undulating areas. This approach
takes about half the time of the uniform method, but it com-
plicates modeling.

After the survey is complete, the surveyor furnishes a com-
puter disk with x-y elevation data for the green’s interior and
ordered x and y coordinates of the green’s perimeter. The
surveyor retains records of reference points to locate the hole
and ball on the modeled green.

In the future, we might use more sophisticated methods,
such as close-range photogrammetry,3

Modeling the green

The system requires models for the ball, hole, pin, and
green. The polygonal description of the golf green includes
three pieces:

e Interior: For uniform data, the system generates the
polygons by connecting neighboring points on the square
grid, as shown in Figure 1. For nonuniform data, a Delaunay
triangulation4 of the data provides the necessary polygons.
This triangulated data can be resampled to provide a uniform
distribution of data.

e Perimeter: The surveyor always includes points outside
the perimeter so the polygons can be trimmed by the perime-
ter data. We fit parametric cubic splines to the perimeter
data and use these splines to clip the polygons that straddle
the perimeter. Figure 2 shows the results.

e Skirt: To help viewers appreciate the green’s inclination,
we produce a skirt around it. The skirt consists of vertical
polygons that start at the green perimeter and extend down-
ward.

We use the generated geometric model, shown in Figure 3,
for rendering and retain the uniformly spaced survey data for
later putt simulations. The greens we have modeled are typi-
cally 60 x 90 feet, requiring 1,000 to 2,000 polygons.

Locating the ball

Accurate locations for balls on the green are required dur-
ing the tournament. We could compute the position of a
point (a ball) in the environment using two measurements
from two different theodolite positions. Alternatively, we
could use a measurement of two angles, vertical and horizon-
tal, plus range data obtained from the ultrasound reflected
from the object back to the theodolite.

Unfortunately, using two surveyors is expensive. Also, golf
balls scatter ultrasound in all directions, reflecting too little
energy back to the surveyor for reliable measurements. How-
ever, we have the green represented in the computer as a
polygonal surface. Thus, we need only one measurement of
vertical and horizontal angles from a known position to cal-
culate the intersection point between the ray from this posi-
tion and the green. Although the precision of this method
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Figure 3. Wireframe model of a green.

decreases as the elevation of the observation point decreases,
the surveyor is normally located on a television tower some
20 feet above the ground and 60 feet from the center of the
green.

Modeling the putt

In providing a putt trajectory model, we want to help view-
ers understand how the green’s topography affects the ball—
not create a putting machine. Therefore, we made trade-offs
to predict the ball trajectories using a reasonable amount of
computer time.

When putted, a golf ball exhibits two types of interactions
with the green surface: sliding and rolling. Sliding occurs dur-
ing the early portion of the putt. Gradually, the friction force
applied to the golf ball in the direction opposite to the mo-
tion direction causes the ball to rotate. The sliding speed de-
creases and the rotation speed increases until the ball starts
rolling without sliding. The rolling coefficient of friction is
much lower than the sliding coefficient of friction. Both val-
ues depend on many parameters, such as moisture content,
height, and growth direction of the grass. For a perfectly uni-
form ball, the rolling begins when the ball speed decreases to
5/7ths of the initial speed independently of the value of the
coefficient of friction.’

In reality, the modern golf ball is not uniform. It is com-
posed of several (usually three) layers of materials, with the
most dense material in the center. Therefore, its moment of
inertia is slightly less than the moment of inertia of the uni-
form ball of the same weight, and it starts pure rolling at a
speed greater than 5/7ths of the initial speed. Because balls
are produced by different manufacturers, we cannot know
ahead of time the moment of inertia of a particular ball. The
United States Professional Golf Association (USPGA) regu-
lations state only that the ball should be 1.68 inches in diame-
ter and weigh 1.62 ounces.’

For our analysis, we assume uniform golf balls. To further
simplify the simulation, we assume that the ball always slides
with two coefficients of friction: one for the first, sliding
phase of motion and another for the second, rolling phase.

To simulate a putt, the system needs the coefficient of fric-
tion of the green surface. Golf course managers use a Stimp-
meter to measure the speed of a golf green. The Stimpmeter
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is an inclined plane with a notch that holds a golf ball. To de-
termine the speed of a green, the operator positions the
Stimpmeter on a flat portion of the green and slowly lifts the
meter. The ball releases from the notch at a 20-degree incli-
nation. The operator uses the distance that the ball travels as
a measure of the green’s speed. To adjust the speed, the
greens keeper can cut the grass shorter or water the grass.

Assuming a simple sliding model, we derive the relation
between coefficient of friction k and the distance S the ball
rolls on a flat green after it leaves the Stimpmeter. If v is the
initial velocity of the ball, then

where |vl, the speed of the ball as it leaves the base of the
Stimpmeter, is 6.0 feet per second,6 and g is the acceleration
of gravity.

To simulate a putt, we must solve two problems. The first,
an initial-value problem, uses an initial position, a velocity,
and direction to predict the ball’s path. The second, a bound-
ary-value problem, uses an initial location, final position, and
final speed to calculate the initial speed and direction. Both
problems require the formulation of differential equations
for the ball sliding on a faceted surface.

Figure 4 shows how the sliding of a body on an inclined
plane is controlled by three forces: the body’s weight P di-
rected down vertically, the reaction of the plane N directed
along the normal to the plane 7, and the friction force Fy, di-
rected opposite to the body’s velocity v. Because Figure 4

Figure 4. Forces controlling sliding on an inclined plane.

shows a 2D projection of a 3D scene, it hides the fact that v is
not necessarily collinear with P + N. Since there is no motion
in the direction perpendicular to the inclined plane, the nor-
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mal reaction N is equal to — (P - m)n. The friction force Fj, is
equal to —k[P - nlv/Ivl, and P = mg, where m is the mass of the
body and g is the acceleration of free fall. From Newton’s
second law it follows that the acceleration a of the body is de-
fined from the relation

ma=mg— (mg-n)n-—klmg - nlv/ vl
or
a=g-(g-n)n—klg-nlv/Ivl
where g = (0, 0, —g), and the z axis is up. For
v=(Vy vy, v,)
a=v'=(a,a,a,)

n= (n_\,, ny, nz)

we can rewrite the last vector equation in coordinate form as
a system of three equations:

a,=gnn,—kgn,v . /vl
a,=gn.n,—kgn.v,/ vl
a,=gnn,—kgny /lvl-g

We introduce auxiliary variables to transform this system of
nonlinear differential second-order equations to a first-order
system. We assume that the independent variable is time ¢
and the position of the body is

x(1) = (x1(2), x2(1), x3(1))

For the velocity (v,, v,, v.), we introduce variables x,, x5, and x;.

Then, we can rewrite the system as a system of six equations:

X = Xy
’
Xy = X5
2
X3 = Xg

’ e )
Xy =gn,n, —kgn,x, [\ xi +x5 + xg
’ 2 . 2
X5 =gn.n, —kgn xs [\ x; + x5 +x§
’ o2 negeesd
Xg =gn,n, —kgn_ xe¢/\xy +x5+x5 — 8

The normal n is a constant along the facet. However, to ac-
commodate smooth transitions from facet to facet, we calcu-
late the normals as an average between corner normals of the
facet. The corner normals are the average of the normals of
each polygon using the corner. (This is exactly the same aver-
aging done in Gouraud shading.) As a result, we get continu-
ous functions on the right side and can use numerical
methods to solve these equations. The exact equations for a
body sliding on a curved surface are more complicated, but
the precision of our geometry model does not warrant more
precise dynamic modeling. Visual comparisons between sim-
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Figure 5. Ball dropping into a cup.

ulated trajectories and actual putts demonstrate that our ap-
proximation is satisfactory. Given the ball’s initial position on
the green and its velocity, we can solve the above system.
The solution represents a ball’s trajectory x(¢) on the green.

It is more interesting and challenging to calculate what the
right velocity should be if the ball’s initial position and its fi-
nal destination, the cup, are given. We can solve this bound-
ary-value problem using a shooting method.” Before we
describe the procedure in more detail, we must clarify the
terminal boundary condition. The ball can fall into the cup if
its trajectory passes close to the cup’s center and its speed is
small enough to allow the ball to drop inside. We use a
heuristic procedure to specify the speed threshold. Figure 5
shows a ball approaching the edge of the cup with speed [vl.
Subject to free fall, the ball will reach the point B with speed

|¥] < Vihreshola = V(%j (2R-r)=0.36 feet per second

where g is the acceleration of free fall, 2R is the cup diame-
ter, and r is the ball radius. If the ball approaches the hole
along a chord less than the diameter of the hole, its threshold
will be less than v eqoi- The threshold goes to zero when the
ball approaches the hole at its tangent. A simpler solution
uses one average threshold, 0.18 feet per second, for all possi-
ble approaches to the hole.

We can use the initial-value problem to solve the bound-
ary-value problem with a shooting method,’ according to the
following algorithm:
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1. Using the initial-value problem solver, make a first
guess by shooting directly at the cup. Take two more shots,
varying the speed by 1 percent and direction by 1 percent. In
all three cases, calculate the trajectory up to the point where
the speed becomes less than the threshold value.

2. Compute the distances from the center of the cup to the
endpoints of all three trajectories. Use these three distances
together with the three speed and direction values to com-
pute improved speed and direction values. The Newton-
Raphson method”® is used here.

3. Repeat steps 1 and 2 with the new guess and direction
until the trajectory approaches the cup center within a dis-
tance less than the cup radius.

This algorithm does not guarantee convergence to a solu-
tion, so we devised a more robust procedure. It too has limi-
tations. Some combinations of ball and cup position preclude
a solution. However, USPGA rules limit cup placement to
nearly flat regions of the green, thus reducing the number of
impossible putts.

In the robust procedure, we denote the distance from the
end of the trajectory to the cup’s center by D,,, where m is
the iteration number in steps 1 and 2. We let s be the scaling
of the green surface z = s * elevation(x, y) in the z direction.
The real green has the scaling factor s = 1. For s < 1 the green
is “flattened,” and for s > 1 the green is “stretched.”

The revised algorithm starts with the scaling set to 1. If it
fails to converge to a solution in less than a fixed number of
iterations (60, for example) or if D,, exceeds a threshold (10
feet, for example), the algorithm flattens the green by one
half between its current scaling S, en (initially set to 1) and
previous scaling ,eyious (initially set to 0). The procedure
tries to solve the problem for these conditions. If it succeeds,
it uses the previous larger scaling with the initial conditions
equal to the found ones; if not, it continues to flatten the
green. This procedure works even if the ball leaves the green.
The elevation of points off the green is set to 0, smoothly
varying at the boundary of the green.

Visualizing the green and putts

The system provides a variety of graphics capabilities to
enhance the viewer’s perception of golf green action:

e Shaded rendering: Gouraud shading applied to the
polygonal facets of the green model, along with adjustable
light sources, provides an enhanced view of the green topog-
raphy. Low-elevation light sources increase the perception of
subtle undulations.

e Camera controls: Simple camera controls allow the op-
erator to move either the look-at or look-from points in a cir-
cle. Figure 6 shows the six ways to move a camera by rotating
its look-from, look-at, and view-up vector. Azimuth and ele-
vation are rotations of the look-from point, while yaw and
pitch are rotations of the look-at point. Roll rotates the view-
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View up

View reference
plane

Elevation (pitch)

Azimuth (yaw)

Look from

View plane normal

Figure 6. Camera controls.

up vector about the view plane normal. In this application,
we withhold roll from the user interface. For rapid camera
changes during a televised match, we provide buttons that
move the camera to green-specific tower and fairway views,
as shown in Figure 7. The tower view parameters are calcu-
lated by superimposing the synthetic green over the TV cam-
era view from the camera tower. Zooming controls let the
operator move the camera in and out along the view plane
normal by a specified ratio.

e Camera location: A prominent feature of any 3D com-
puter graphics application is the flexibility and usability of
the viewing mechanism.” We chose a camera model because
of its versatility and intuitive user interface. However, the
camera model is so flexible that an operator can lose the
green. To prevent this, the system calculates a default view
any time a ball or the pin moves. The default view, shown in
Figure 8, places the camera behind the ball, looking at the
pin, about three feet above the green. With the look-at point
halfway between the ball and the hole, the operator can
move quickly from the golfer’s point of view to the caddy’s
behind the pin.

e Animation: The operator can start a continuous azi-
muthal movement of the camera and change other viewing
and analysis parameters while the animation runs. Typically,
the operator zooms in and out and changes the camera eleva-
tion. This feature simulates a fly around the green, much like
the helicopter camera shots often seen on television.

e Exaggeration: Scaling the green’s elevation exaggerates
any undulations in the green. Figure 9 shows how even the
slightest change in elevation creates a mountain range.

e Trajectory display: The simulated putt is displayed as a
line traveling along the green’s surface, as a series of balls
tracking the trajectory, or as an animation of the ball rolling,
as shown in Figure 10. While solving the boundary-value
problem, the system shows the intermediate guesses. Al-
though this feature would not interest a television viewer, the
adaptation of the shooting method solutions to the green’s
topography is interesting to the scientist.
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Figure 7. Tower view.

Figure 8. The golfer’s view.

Figure 9. Exaggerating the green.
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Figure 10. Trajectory of a simulated putt.

e Vertical plane: Figure 11 shows a transparent vertical
plane passing through the ball and hole positions to enhance
the viewer’s appreciation for the break of the ball.

e Horizontal plane: To highlight the relative elevations of
different portions of the green, the operator can raise and
lower a transparent horizontal plane, as shown in Figure 12.
This flooding effect is especially useful to show subtle eleva-
tion changes.

o Putt difficulty maps: A putt difficulty map shows the rel-
ative difficulty of putting from each point on the green to a
given pin location. The system assesses the difficulty of
putting from a point as follows: First it solves the boundary-
value problem for that point. Then it varies the initial speed
and direction by small amounts and solves the initial-value
problem for each variation. Difficulty is the average distance
these putts lie from the hole. This amounts to a sensitivity
analysis of the putt: If slight changes in the initial-value prob-
lem result in large variations from the perfect putt (the
boundary-value solution), then a putt from this point is more
difficult than another that has less variation. As Figure 13
shows, we apply this variation as a color to the vertex of each
point in the geometric model and render the Gouraud-
shaded polygons with interpolated colors. Difficulty varies
from easy (green) to hard (red). Of course, a pin location
change requires a new difficulty map.

e Quantitative results: As a by-product of the analysis, we
obtain distance to the hole, elevation above or below the hole,
and amount of break for each ball. These accurate values in
themselves are interesting to the viewer. The system calcu-
lates the break of the ball along its path by finding the maxi-
mum deviation of the ball’s path from a straight trajectory.

Results

We have experimented with the system at two golf tourna-
ments broadcast by the National Broadcasting Company
(NBC).
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Figure 11. Vertical plane.

Figure 12. Horizontal plane.
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Figure 13. Putt difficulty map.

Figure 14. Walt Disney World 18th hole.

Walt Disney World Classic

On October 20, 1990, we attended the Walt Disney World
Classic, a PGA tournament held in Orlando, Florida. We had
two greens surveyed, the 15th and 18th, but during the tour-
nament we used only the 18th green, shown in Figure 14.
Each green required one day of survey time. During the tour-
nament, a surveyor stationed on the 18th green camera tower
used a theodolite to locate each player’s ball. The surveyor
provided horizontal and vertical angles for the balls. Using
these angles, a ray-tracing algorithm cast a ray from the sur-
veyor’s location at the polygonal green and calculated x, y,
and z coordinates for the ball. During the nearly three-
minute interval between the last golfer’s shot to the green
and the first golfer’s putt, an operator selected camera and
light locations and started the putt simulations. All calcula-
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tions were completed by
the time the golfers reached
the green. During the last
round of the tournament,
59 putts were simulated—
all before the golfers began
putting.

Tim Simpson led by a
large margin throughout
the tournament, but John
Mahaffey birdied eight
holes in a row to pull within
one stroke coming to the fi-
nal hole. The producer in-
formed us that because the
match was so close, he was
not comfortable about in-
troducing our new technol-
ogy. However, he invited us
to try our system at a future
tournament.

JAL Big Apple

Our next opportunity to use the golf visualization system
was in July 1991 at the Wykagyl Country Club in New
Rochelle, New York. This was a Ladies Professional Golf
Association Tournament. Our experience in Orlando taught
us to avoid the last hole of the tournament, so here we chose
the par 3 16th hole, shown in Figure 15. This green is almost
perfectly flat, but it does have a large slope from back to
front. Also, this time we had the pleasure of showing our sys-
tem to two NBC sports commentators, Charley Jones and
Bob Trumpe. Both were excited about the system and sug-
gested how we might improve it. For example, Trumpe asked
us to color the higher elevations brown and the lower eleva-
tions green, to help the viewer understand how the green
tilted.

During the two days of the telecast, the system performed
superbly, and our simulations were shown live several times
during the broadcast. We had our Silicon Graphics worksta-
tion in a trailer about 100 feet from the producer. During the
broadcast, the producer told us when to show the simulation.
Typically, we showed the putts from the golfer’s point of
view and occasionally from the caddy’s viewpoint.

Implementation

We coded the system in LYMB," a C-based object-ori-
ented system that supports message passing and inheritance.
LYMB applications are written using scripts that create in-
stances of classes and change instances’ states. The classes are
written in C. LYMB has more than 400 classes that support a
variety of applications: scientific visualization, industrial in-
spection, computer animation," and molecular modeling.

Our golf application uses many existing classes such as ren-
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User interface

By integrating user-inter-
face classes with existing ap-
plications, including the
parser and animation classes,
we created a powerful visual-
ization environment. Figure
16 shows one user interface to
the golf simulation. The green
can be viewed from different
points in space with a virtual
camera controlled by a point-
ing device (a mouse). The
user performs the rest of the
interactions using various
widgets in the control panel
on the right:

e Pin & Ball pops up slid-
ers to change the position of
the pin and the ball on the

Figure 15. Wykagyl Country Club 16th hole.

derers, cameras, lights, actors, models, and splines. We also
developed classes specifically for golf modeling and analysis.
One set of analysis classes implements the initial- and bound-
ary-value solution algorithms in Numerical Recipes.7 User-in-
terface classes for the HP widgets12 permitted us to create a
custom and portable X Window user interface.”” The inter-
preted LYMB environment let us customize the user inter-
face for easy operator interaction during the broadcast.

The Golf Green class reads survey data and creates a
polygonal model of the green, perimeter, and skirt. It also re-
sponds to @(x,y)z?, returning the value of the elevation at
the requested Cartesian location on the green surface. An-
other message, @(x,y)normal?, returns the surface normal at
the point (x, y). The initial-value problem solver uses these
messages. Golf Green has a scale factor that scales the eleva-
tions and normals so the shooting method can control the
flatness of the green. We implemented the shooting method
in a LYMB script that uses loops, the initial-value solver, and
Golf Green classes.

The system runs on Sun 3/4, Hewlett-Packard 9000, Star-
dent GS2000, Digital Equipment DS5000, and Silicon Graph-
ics 4D workstations. Rendering classes for vendor-specific
hardware permit fast response on these systems. For in-
stance, the Silicon Graphics workstation renders a typical
green at 5 frames per second. Initial-value problems on this
machine take less than a second. Boundary-value solution
times depend on the green topography, coefficient of friction,
and distance from the hole. For distances less than 10 feet,
solution times are under 3 seconds. Distances longer than 30
feet require an average of about 20 seconds.
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green. Whenever the ball or

pin position is changed, the

system places the virtual cam-

era in a natural player’s posi-
tion, so the ball and the hole are in the field of view. After
the user changes the ball or hole position, three widgets im-
mediately show suggested speed, direction, and distance from
the ball to the hole.

e Arrow widgets change the initial putt speed and direc-
tion. Footprints and a putter head are displayed beside the
ball each time the direction is changed. Zero direction corre-
sponds to the straight line from the ball to the hole.

e The Putt selection shows the ball’s trajectory on the
green calculated on the basis of the defined initial speed and
direction.

Figure 16. Golf simulation user interface.
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e Continue shows the ball placed at the end of the trajec-
tory. The virtual camera is adjusted to the new position.

Other pop-up panels not presented here give additional
options:

e Perfect Putt shows solving the boundary-value problem
using a shooting method and displays the intermediate trajec-
tories. When the system reaches the solution, it displays two
text widgets with the chosen initial speed and direction. The
user can change the speed and the direction data for the per-
fect putt and analyze the solution’s sensitivity to the initial
conditions.

e Arrows in the viewing subpanel let the user select four
predefined viewing positions. Possible choices are one step to
the left, one step to the right, a bent-knees position, and a po-
sition looking down from above. These simulate the views a
golfer gets by moving left, right, down, and up.

* On-off toggles corresponding to four lights placed in the
corners of a rectangle around the green let the user change il-
lumination. Appropriate lighting helps reveal the green’s to-

pography.

We modified the interface substantially before and during
the two golf tournaments. The major changes were to accom-
modate fast data entry during the hectic broadcast times. Be-
cause LYMB is interpreted, no compilation changes were
required.

Summary

Although we started our golf green visualization project in
1987, we did not realize its significance until 1990 when ad-
vances in hardware speeds and LYMB permitted its revival
and success. Computer graphics has a vast repertoire of tech-
niques that can be applied to sports. Our system blends
mathematics, graphics, and computer science to enhance
viewer entertainment. There are other potential applications
of the golf green visualization system. Certainly, with faster
hardware and innovative input devices, our work could lead
to a golf putting simulation system for the recreational golfer.
Also, golf course designers could use our system to design
new golf greens and rehabilitate old greens. And because
computers will become even faster and smaller, we envision a
golf-cart-mounted system that uses telemetry to locate the
ball and perform a simulation before the golfer reaches the
green.

On the technical side, we are investigating better ways to
find the parameters for the perfect putt. Even the fastest
computers are challenged by the boundary-value problem.
The initial-value problem is much easier to solve, and we can
avoid the solution of the boundary-value problem by solving
a set of initial-value problems before the tournament. The
system can use the set of ball trajectories covering the green
as a curvilinear coordinate grid and interpolate to find the
perfect putt. a
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